On Secret Sharing with Nonlinear Product Reconstruction
نویسندگان
چکیده
Multiplicative linear secret sharing is a fundamental notion in the area of secure multiparty computation (MPC) and, since recently, in the area of two-party cryptography as well. In a nutshell, this notion guarantees that “the product of two secrets is obtained as a linear function of the vector consisting of the coordinate-wise product of two respective share-vectors”. This paper focuses on the following foundational question, which is novel to the best of our knowledge. Suppose we abandon the latter linearity condition and instead require that this product is obtained by some, not-necessarily-linear “product reconstruction function”. Is the resulting notion equivalent to multiplicative linear secret sharing? We show the (perhaps somewhat counter-intuitive) result that this relaxed notion is strictly more general. Concretely, fix a finite field Fq as the base field over which linear secret sharing is considered. Then we show there exists an (exotic) linear secret sharing scheme with an unbounded number of players n such that it has t-privacy with t = Ω(n) and such that it does admit a product reconstruction function, yet this function is necessarily nonlinear. In addition, we determine the minimum number of players for which those exotic schemes exist. Our proof is based on combinatorial arguments involving quadratic forms. It extends to similar separation results for important variations, such as strongly multiplicative secret sharing.
منابع مشابه
Sharing several secrets based on Lagrange's interpolation formula and Cipher feedback mode
In a multi-secret sharing scheme, several secret values are distributed among a set of n participants.In 2000 Chien et al.'s proposed a (t; n) multi-secret sharing scheme. Many storages and publicvalues required in Chien's scheme. Motivated by these concerns, some new (t; n) multi-secret sharingschemes are proposed in this paper based on the Lagrange interpolation formula for polynomials andcip...
متن کاملSecret Sharing Based On Cartesian product Of Graphs
The purpose of this paper is to study the information ratio of perfect secret sharing of product of some special families of graphs. We seek to prove that the information ratio of prism graphs $Y_{n}$ are equal to $frac{7}{4}$ for any $ngeq 5$, and we will gave a partial answer to a question of Csirmaz cite{CL}. We will also study the information ratio of two other families $C_{m}times C_{n}$ a...
متن کاملOn the design and security of a lattice-based threshold secret sharing scheme
In this paper, we introduce a method of threshold secret sharing scheme (TSSS) in which secret reconstruction is based on Babai's nearest plane algorithm. In order to supply secure public channels for transmitting shares to parties, we need to ensure that there are no quantum threats to these channels. A solution to this problem can be utilization of lattice-based cryptosystems for these channe...
متن کاملA Fast Publicly Verifiable Secret Sharing Scheme using Non-homogeneous Linear Recursions
A non-interactive (t,n)-publicly veriable secret sharing scheme (non-interactive (t,n)-PVSS scheme) is a (t,n)-secret sharing scheme in which anyone, not only the participants of the scheme, can verify the correctness of the produced shares without interacting with the dealer and participants. The (t,n)-PVSS schemes have found a lot of applications in cryptography because they are suitable for<...
متن کاملFair secret reconstruction in (t, n) secret sharing
In Shamir’s (t, n) threshold secret sharing scheme, one secret s is divided into n shares by a dealer and all shares are shared among n shareholders, such that knowing t or more than t shares can reconstruct this secret; but knowing fewer than t shares cannot reveal any information about the secret s. The secret reconstruction phase in Shamir’s (t, n) threshold secret sharing is very simple and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013